Semi-supervised emotion lexicon expansion with label propagation and specialized word embeddings
نویسنده
چکیده
There exist two main approaches to automatically extract affective orientation: lexicon-based and corpus-based. In this work, we argue that these two methods are compatible and show that combining them can improve the accuracy of emotion classifiers. In particular, we introduce a novel variant of the Label Propagation algorithm that is tailored to distributed word representations, we apply batch gradient descent to accelerate the optimization of label propagation and to make the optimization feasible for large graphs, and we propose a reproducible method for emotion lexicon expansion. We conclude that label propagation can expand an emotion lexicon in a meaningful way and that the expanded emotion lexicon can be leveraged to improve the accuracy of an emotion classifier.
منابع مشابه
Semi-Supervised Affective Meaning Lexicon Expansion Using Semantic and Distributed Word Representations
In this paper, we propose an extension to graph-based sentiment lexicon induction methods by incorporating distributed and semantic word representations in building the similarity graph to expand a threedimensional sentiment lexicon. We also implemented and evaluated the label propagation using four different word representations and similarity metrics. Our comprehensive evaluation of the four ...
متن کاملTwo-View Label Propagation to Semi-supervised Reader Emotion Classification
In the literature, various supervised learning approaches have been adopted to address the task of reader emotion classification. However, the classification performance greatly suffers when the size of the labeled data is limited. In this paper, we propose a two-view label propagation approach to semi-supervised reader emotion classification by exploiting two views, namely source text and resp...
متن کاملData-Driven Graph Construction for Semi-Supervised Graph-Based Learning in NLP
Graph-based semi-supervised learning has recently emerged as a promising approach to data-sparse learning problems in natural language processing. All graph-based algorithms rely on a graph that jointly represents labeled and unlabeled data points. The problem of how to best construct this graph remains largely unsolved. In this paper we introduce a data-driven method that optimizes the represe...
متن کاملSemi-Supervised Polarity Lexicon Induction
We present an extensive study on the problem of detecting polarity of words. We consider the polarity of a word to be either positive or negative. For example, words such as good, beautiful , and wonderful are considered as positive words; whereas words such as bad, ugly, and sad are considered negative words. We treat polarity detection as a semi-supervised label propagation problem in a graph...
متن کاملA Unified View of Graph-based Semi-Supervised Learning: Label Propagation, Graph-Cuts, and Embeddings
Recent years have seen a growing number of graph-based semisupervised learning methods. While the literature currently contains several of these methods, their relationships with one another and with other graph-based data analysis algorithms remain unclear. In this paper, we present a unified view of graph-based semi-supervised learning. Our framework unifies three important and seemingly unre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.03910 شماره
صفحات -
تاریخ انتشار 2017